3.1: [to be submitted, 20 marks] (a) Compute the fourth order Taylor polynomial of ex2 at 0 . (b) Show the existence of and compute i. l = lim x → 0 esin2(x) − 1 x2. ii. lim x → 0 ( e sin2(x) − 1 x 4 − l x 2)

3.1: [to be submitted, 20 marks] (a) Compute the fourth order Taylor polynomial of ex2 at 0 . (b) Show the existence of and compute i. l = lim x → 0 esin2(x) − 1 x2. ii. lim x → 0 ( e sin2(x) − 1 x 4 − l x 2)

Image text
3.1: [to be submitted, 20 marks]
(a) Compute the fourth order Taylor polynomial of e x 2 at 0 .
(b) Show the existence of and compute
i.
l = lim x 0 e sin 2 ( x ) 1 x 2 .
ii.
lim x 0 ( e sin 2 ( x ) 1 x 4 l x 2 )

Detailed Answer

Answer
  • Student Reviews:
  • (2)
  • Correct answers (2)
  • Complete solution (2)
  • Step-by-step solution (2)
  • Fully explained (2)