Find a parametrization for the curve. The upper half of the parabola x−1 = y2 Choose the correct answer below. A. x =t2+1 , y =t,t≥0B. x =t, y =t2−1 ,t≥0C. x =t, y =t2+1 ,t≤1D. x =t2−1 , y =t,t≥1E. x =t, y =t2−1 ,t≥1F. x =t2+1 , y =t,t≤0

Find a parametrization for the curve. The upper half of the parabola x−1 = y2 Choose the correct answer below. A. x =t2+1 , y =t,t≥0B. x =t, y =t2−1 ,t≥0C. x =t, y =t2+1 ,t≤1D. x =t2−1 , y =t,t≥1E. x =t, y =t2−1 ,t≥1F. x =t2+1 , y =t,t≤0

Image text
Find a parametrization for the curve.
The upper half of the parabola x 1 = y 2
Choose the correct answer below.
A. x = t 2 + 1 , y = t , t 0
B. x = t , y = t 2 1 , t 0
C. x = t , y = t 2 + 1 , t 1
D. x = t 2 1 , y = t , t 1
E. x = t , y = t 2 1 , t 1
F. x = t 2 + 1 , y = t , t 0

Explanation & Steps

First of all plot the the curve and determine the range of x and y coordinates for upper half of the parabola. Now determine whether x or y should equal to t and determine x or y in terms of t. Range of t should be determined based on the ranges of x and y coordinate.

Detailed Answer

Answer
  • Student Reviews:
  • (2)
  • Correct answers (2)
  • Complete solution (2)
  • Step-by-step solution (2)
  • Fully explained (2)