Find the cubic function of the form f(x) = ax3 + bx2 + cx + d where a ≠ 0 and the coefficients a, b, c, d are real numbers, which satisfies the conditions given below. Relative maximum: (3, 3) Relative minimum: (5, 1) Inflection point: (4, 2) f(x) = 12 x3 − 6x2 + 45 2 x + 24 f(x) = 12 x3 − 6x2 + 41 2 x +23 f(x) = 12 x3 − 6x2 + 45 2 x − 24 f(x) = 12 x3 − 6x2 + 41 2 x − 23 f(x) = −12 x3 + 6x2 − 45 2 x + 24