Find the cubic function of the form f(x) = ax3 + bx2 + cx + d where a ≠ 0 and the coefficients a, b, c, d are real numbers, which satisfies the conditions given below. Relative maximum: (3, 3) Relative minimum: (5, 1) Inflection point: (4, 2) f(x) = 12 x3 − 6x2 + 45 2 x + 24 f(x) = 12 x3 − 6x2 + 41 2 x +23 f(x) = 12 x3 − 6x2 + 45 2 x − 24 f(x) = 12 x3 − 6x2 + 41 2 x − 23 f(x) = −12 x3 + 6x2 − 45 2 x + 24

Find the cubic function of the form f(x) = ax3 + bx2 + cx + d where a ≠ 0 and the coefficients a, b, c, d are real numbers, which satisfies the conditions given below. Relative maximum: (3, 3) Relative minimum: (5, 1) Inflection point: (4, 2) f(x) = 12 x3 − 6x2 + 45 2 x + 24 f(x) = 12 x3 − 6x2 + 41 2 x +23 f(x) = 12 x3 − 6x2 + 45 2 x − 24 f(x) = 12 x3 − 6x2 + 41 2 x − 23 f(x) = −12 x3 + 6x2 − 45 2 x + 24

Image text
Find the cubic function of the form f ( x ) = a x 3 + b x 2 + c x + d where a 0 and the coefficients a , b , c , d are real numbers, which satisfies the conditions given below.
Relative maximum: ( 3 , 3 ) Relative minimum: ( 5 , 1 ) Inflection point: ( 4 , 2 ) f ( x ) = 1 2 x 3 6 x 2 + 45 2 x + 24 f ( x ) = 1 2 x 3 6 x 2 + 41 2 x + 23 f ( x ) = 1 2 x 3 6 x 2 + 45 2 x 24 f ( x ) = 1 2 x 3 6 x 2 + 41 2 x 23 f ( x ) = 1 2 x 3 + 6 x 2 45 2 x + 24

Detailed Answer