Given that limx→1 f(x) = 4 limx→1 g(x) = −4 limx→1 h(x) = 0, find the limits, if they exist. (If an answer does not exist, enter DNE.) (a) limx→1 [f(x) + 5g(x)] (b) limx→1 [g(x)]3 (c) limx→1 f(x) (d) limx→1 2f(x) g(x) (e) limx→1 g(x) h(x) (f) limx→1 g(x)h(x) f(x)

Given that limx→1 f(x) = 4 limx→1 g(x) = −4 limx→1 h(x) = 0, find the limits, if they exist. (If an answer does not exist, enter DNE.) (a) limx→1 [f(x) + 5g(x)] (b) limx→1 [g(x)]3 (c) limx→1 f(x) (d) limx→1 2f(x) g(x) (e) limx→1 g(x) h(x) (f) limx→1 g(x)h(x) f(x)

Image text
Given that
lim x 1 f ( x ) = 4 lim x 1 g ( x ) = 4 lim x 1 h ( x ) = 0 ,
find the limits, if they exist. (If an answer does not exist, enter DNE.) (a) lim x 1 [ f ( x ) + 5 g ( x ) ] (b) lim x 1 [ g ( x ) ] 3 (c) lim x 1 f ( x ) (d) lim x 1 2 f ( x ) g ( x ) (e) lim x 1 g ( x ) h ( x ) (f) lim x 1 g ( x ) h ( x ) f ( x )

Detailed Answer